Gene Analysis

Gene centric analysis workflow

This advanced workflow performs comprehensive gene-centric analysis including gene prediction, functional annotation, pangenome reconstruction, and taxonomic classification.

Description

The gene_analysis workflow performs comprehensive gene-centric analysis of metagenomic data. This advanced workflow focuses on detailed functional annotation and analysis:

  • Gene prediction - Identification of protein-coding genes
  • Functional annotation - Assignment of functional categories and pathways
  • Pangenome reconstruction - Metagenomic Species Pan-genome (MSP) reconstruction
  • Taxonomic annotation - Assignment of taxonomy at MPS

Parameters

Required Parameters

Parameter Type Description
--input File path Input .csv file for gene analysis

Optional Parameters

Parameter Type Default Description
--contig_catalog File path - Contigs catalog (if available)
--metaphlan_profiles File path - MetaPhlan profiles (merged, if available)

Global Parameters

Parameter Required Default Description
--outdir No results Output directory
--help No - Display help information
--debug No false Enable debug mode
--config No - Custom configuration file

Syntax

metagear gene_analysis --input INPUT_FILE [--contig_catalog CATALOG_FILE] [GLOBAL_OPTIONS]

Examples

Basic Usage

# Run gene analysis with default settings
metagear gene_analysis --input samples.csv

# Run with custom output directory
metagear gene_analysis --input samples.csv --outdir gene_results

# Use pre-computed contigs catalog
metagear gene_analysis --input samples.csv --contig_catalog contigs_catalog.fasta

# Enable debug mode for troubleshooting
metagear gene_analysis --input samples.csv --debug

Preview Mode

# Generate script without executing
metagear gene_analysis --input samples.csv --preview

This will create a metagear_gene_analysis.sh script that can be reviewed and executed manually.

Input Format

The input CSV file should contain sample information with the following columns:

sample,fastq_1,fastq_2
SAMPLE-01,/path/to/sample1_R1.fastq.gz,/path/to/sample1_R2.fastq.gz
SAMPLE-02,/path/to/sample2_R1.fastq.gz,/path/to/sample2_R2.fastq.gz
SAMPLE-03,/path/to/sample3_R1.fastq.gz,/path/to/sample3_R2.fastq.gz

Optional Catalog Input

If you have a pre-computed contigs catalog (from a previous assembly), you can provide it with the --contig_catalog parameter:

metagear gene_analysis --input samples.csv --contig_catalog my_contigs_catalog.fasta

The catalog should be in FASTA format containing assembled contigs.

Output

The workflow generates comprehensive gene analysis results in the following directory structure:

outdir/
├── megahit/                     # Assembly results (per sample)
│   ├── {sample}.contigs.fa      # Assembled contigs
│   ├── {sample}.log             # Assembly log files
│   └── {sample}.k{kmer}.fastg.gz # Assembly graph files
├── prodigal/                    # Gene prediction results
│   ├── {sample}.fna.gz          # Predicted nucleotide sequences
│   ├── {sample}.faa.gz          # Predicted protein sequences
│   ├── {sample}.gff.gz          # Gene annotation in GFF format
│   └── {sample}_all.txt.gz      # Complete gene annotations
├── cdhit/                       # Gene catalog construction
│   ├── merged_genes.nr_95_90.fa # Non-redundant gene catalog (95% similarity)
│   ├── merged_genes.nr_95_90.fa.clstr # Clustering information
│   └── protein_catalog.prot.faa # Protein catalog
├── coverm/                   # Gene abundance quantification
│   ├── gene_abundance_count_merged.tsv    # Raw read counts per gene
│   ├── gene_abundance_rpkm_merged.tsv     # RPKM normalized abundances
│   ├── gene_abundance_tpm_merged.tsv      # TPM normalized abundances
│   └── bwa_index/                         # BWA alignment indices
├── interproscan/                # Functional annotation results
│   ├── protein_catalog.annotations.tsv    # InterProScan annotations
│   └── protein_catalog.FG_IPS_Pfam.tsv   # Functional group annotations
├── msp/                    # Metagenomic Species Pan-genome (MSP) analysis
│   ├── msp_abundance.median.RPKM.txt      # MSP abundance profiles
│   ├── all_msps.tsv                       # MSP definitions and gene content
│   ├── pangenome_sequences/               # MSP pangenome FASTA files
│   └── msp_metaphlan_LM.bestR2.txt       # MSP-MetaPhlAn taxonomic mapping
├── gtdbtk/                      # Taxonomic classification
│   ├── classify/                          # GTDB-Tk classification results
│   ├── identify/                          # Marker gene identification
│   └── align/                             # Multiple sequence alignments
├── multiqc/                     # Quality control and summary reports
│   ├── multiqc_report.html                # Consolidated analysis report
│   ├── multiqc_data/                      # Parsed statistics and data
│   └── multiqc_plots/                     # Static plot images
└── pipeline_info/               # Pipeline execution metadata
    ├── execution_report.html              # Nextflow execution report
    ├── execution_timeline.html            # Processing timeline
    └── execution_trace.txt                # Resource usage tracking

Key Output Files

Gene catalog and abundance:

  • cdhit/merged_genes.nr_95_90.fa - Non-redundant gene catalog for all samples
  • abundance/gene_abundance_rpkm_merged.tsv - Gene abundance matrix (RPKM normalized)
  • abundance/gene_abundance_count_merged.tsv - Raw read count matrix per gene

Functional annotation:

  • interproscan/protein_catalog.annotations.tsv - Comprehensive functional annotations (InterProScan)
  • interproscan/protein_catalog.FG_IPS_Pfam.tsv - Functional group classifications

MSP (Metagenomic Species Pan-genome) analysis:

  • mspminer/msp_abundance.median.RPKM.txt - MSP abundance profiles across samples
  • mspminer/all_msps.tsv - MSP definitions with gene membership
  • mspminer/pangenome_sequences/{msp_id}.pangenome.fasta - Individual MSP pangenome sequences
  • mspminer/msp_metaphlan_LM.bestR2.txt - Best taxonomic assignments for MSPs

Taxonomic classification:

  • gtdbtk/classify/{sample}.bac120.summary.tsv - Bacterial taxonomic assignments
  • gtdbtk/classify/{sample}.ar53.summary.tsv - Archaeal taxonomic assignments

Assembly and gene prediction (per sample):

  • megahit/{sample}.contigs.fa - Assembled contigs per sample
  • prodigal/{sample}.faa.gz - Predicted protein sequences per sample

Prerequisites

Before running this workflow:

  1. Install databases: Run metagear download_databases first
  2. Quality control: Run qc_dna (for DNA data) or qc_rna (for RNA data) on raw data first
  3. Sufficient resources: Gene analysis is computationally intensive
  4. Large disk space: Assembly and annotation require substantial storage
# 1. Download databases (run once)
metagear download_databases

# 2. Quality control
metagear qc_dna --input raw_samples.csv

# 3. Optional: Run microbial profiling first
metagear microbial_profiles --input qc_samples.csv

# 4. Gene-centric analysis
metagear gene_analysis --input qc_samples.csv

Troubleshooting

Common issues and solutions:

  • Assembly failure: Check input data quality and quantity
  • Memory errors: Increase available RAM or use catalog mode
  • Annotation database errors: Ensure all databases are properly downloaded
  • Low gene density: May indicate poor assembly quality or unusual sample type
  • Long runtime: Consider using a pre-computed catalog or increasing CPU cores

← Back to Workflows Overview